What's New

YOUR MENTOR Study Group on Facebook(For Static GK, Computer & Banking Article)- Join Now
HOT CHIPS (Current Affairs One Liners)- Read Now
200 Important Quantitative Aptitude Questioins with Answers- Download Now
Banking Awareness Hand Book By Er. G.C Nayak -Download Now
Quantitative Aptitude 20-20 - Download Now

Log & Anti-log Amplifier

  •  A log amplifier (logarithmic converter) is one for which the output voltage Vout is K times the natural log of the input voltage Vin. This can be expressed as,

                                                           V_\mathrm{out} = K \ln\frac{V_\mathrm{in}}{V_\mathrm{ref}}
          where Vref is the normalization constant in volts and K is the scale factor.





                     A necessary condition for successful operation of a log amplifier is that the input voltage, Vin is always positive. This may be ensured by using a rectifier and filter to condition the input signal before applying to the log amp input. As Vin is positive, Vout is obliged to be negative (since the op amp is in the inverting configuration) and is large enough to forward bias the emitter-base junction of the BJT keeping it in the active mode of operation. Now,
V_\mathrm{BE} = -V_\mathrm{out}\,\!
I_\mathrm C = I_\mathrm{SO}(e^{V_\mathrm{BE} / V_\mathrm T} - 1) \approx I_\mathrm {SO} e^{V_\mathrm{BE} /V_\mathrm T}
\Rightarrow V_\mathrm{BE} = V_\mathrm T \ln \frac{I_\mathrm C}{I_\mathrm{SO}}
where I_\mathrm{SO}\, is the saturation current of the emitter-base diode and V_\mathrm T\, is the thermal voltage. Due to the virtual ground at the op amp differential input,
I_\mathrm C = \frac{V_\mathrm{in}}{R_1}, and
V_\mathrm{out} = -V_\mathrm T \ln \frac{V_\mathrm{in}}{I_\mathrm{SO} R_1}
The output voltage is expressed as the natural log of the input voltage. Both the saturation current I_\mathrm{SO}\, and the thermal voltage V_\mathrm T\, are temperature dependent, hence, temperature compensating circuits may be required.


     The relationship between the input voltage V_{\text{in}} and the output voltage V_{\text{out}} is given by:
                                            V_{\text{out}} = -V_{\text{T}} \ln \left( \frac{V_{\text{in}}}{I_{\text{S}} \, R} \right)
where I_{\text{S}} and V_{\text{T}} are the saturation current and the thermal voltage of the diode respectively.

  • EXPONENTIAL/ANTILOG AMPLIFIER:


The relationship between the input voltage v_{\text{in}} and the output voltage v_{\text{out}} is given by:
                                                   v_{\text{out}} = -R I_{\text{S}} e^{\frac{v_{\text{in}}}{V_{\text{T}}}}
where I_{\text{S}} is the saturation current and V_{\text{T}} is the thermal voltage.

  • Considering the operational amplifier ideal, then the negative pin is virtually grounded, so the current through the diode is given by:

I_{\text{D}} = I_{\text{S}} \left( e^{\frac{V_{\text{D}}}{V_{\text{T}}}} - 1 \right)
when the voltage is greater than zero, it can be approximated by:
I_{\text{D}} \simeq I_{\text{S}} e^{\frac{V_{\text{D}}}{V_{\text{T}}}}.
The output voltage is given by:
v_{\text{out}} = -R I_{\text{D}}.\,



1 comment:

Studylivezone said...

Thanks a lot for giving us such a helpful information. You can also visit our website for Amity project